50. (a) The compression of the spring is d = 0.12 m. The work done by the force of gravity (acting on the block) is, by Eq. 7-12,

$$W_1 = mgd = (0.25 \text{ kg}) (9.8 \text{ m/s}^2) (0.12 \text{ m}) = 0.29 \text{ J}.$$

(b) The work done by the spring is, by Eq. 7-26,

$$W_2 = -\frac{1}{2}kd^2 = -\frac{1}{2} (250 \text{ N/m}) (0.12 \text{ m})^2 = -1.8 \text{ J}.$$

(c) The speed v_i of the block just before it hits the spring is found from the work-kinetic energy theorem (Eq. 7-15).

$$\Delta K = 0 - \frac{1}{2}mv_i^2 = W_1 + W_2$$

which yields

$$v_i = \sqrt{\frac{(-2)(W_1 + W_2)}{m}} = \sqrt{\frac{(-2)(0.29 - 1.8)}{0.25}} = 3.5 \text{ m/s}.$$

(d) If we instead had $v'_i = 7 \text{ m/s}$, we reverse the above steps and solve for d'. Recalling the theorem used in part (c), we have

$$0 - \frac{1}{2}mv_i^{\prime 2} = W_1' + W_2' = mgd' - \frac{1}{2}kd'^2$$

which (choosing the positive root) leads to

$$d' = \frac{mg + \sqrt{m^2g^2 + mkv_i'^2}}{k}$$

which yields d' = 0.23 m. In order to obtain this result, we have used more digits in our intermediate results than are shown above (so $v_i = \sqrt{12.048} = 3.471$ m/s and $v'_i = 6.942$ m/s).